

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International GCSE in Further Pure Mathematics Paper 1 (4PM0/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 4PM0_01_1606_MS All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - A marks: accuracy marks. Can only be awarded if the relevant method mark(s) has (have) been gained.
 - o B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

• No working

If no working is shown then correct answers may score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated always check the working and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread which does not significantly simplify the question loses two A (or B) marks on that question, but can gain all the M marks. Mark all work on follow through but enter A0 (or B0) for the first two A or B marks gained.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there are multiple attempts shown, then all attempts should be marked and the highest score on a single attempt should be awarded.

• Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially shows that the candidate did not understand the demand of the question.

• Linear equations

Full marks can be gained if the solution alone is given, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another

General Principles for Further Pure Mathematics Marking

(but note that specific mark schemes may sometimes override these general principles)

Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^{2} + bx + c) = (x + p)(x + q)$$
 where $|pq| = |c|$

$$(ax^{2} + bx + c) = (mx + p)(nx + q)$$
 where $|pq| = |c|$ and $|mn| = |a|$

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for *a*, *b* and *c*, leading to x=....

3. Completing the square:

Solving
$$x^2 + bx + c = \left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$$
 where $q \neq 0$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1.

2. Integration:

Power of at least one term increased by 1.

Use of a formula:

Generally, the method mark is gained by

either quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

or, where the formula is not quoted, the method mark can be gained by implication

from the substitution of <u>correct</u> values and then proceeding to a solution.

Answers without working:

The rubric states "Without sufficient working, correct answers may be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show....

Exact answers:

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

Rounding answers (where accuracy is specified in the question)

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

a	-	
Question Number	Scheme	Marks
1(a)	Substitute $x = \pm 2$ or divide by $(x-2)$	M1
	$\operatorname{Rem} = 0$	A1
		(2)
(b)	Use remainder theorem with $x = \pm 1, \pm 3$; remainder theorem again or	
	inspection OR Divide $f(x)$ by $x-2$, Factorise quadratic	M1M1
	(x-2)(x+3)(x-1) All 3 brackets must be shown.	A1
		(3)
	Notos	[5]
	<u>Notes</u>	
A1: for the This is a stand 8–14 ALT Usin M1: mini evidence of A1: correction of the correction of the theorem of theorem of the theorem of t	either substituting ± 2 or attempting to divide by $(x-2)$ he remainder = 0 how so please check that $f(\pm 2) = (\pm 2)^3 - 7(\pm 2) + 6$ is seen for M1 $x+6=0$ or $2^3-2\times7+6=0$ is seen for the A mark ng division mally acceptable answer for the quotient for this mark is $x^2 + 2x \pm k$ If the of inclusion of a term in x^2 somewhere in their division – M0 ect quotient $(x-2)(x^2+2x-3)$ and there must be a conclusion. bre $(x-2)$ is a factor oe.	re is no
(b) In general second fac	, first M1 for finding one factor or dividing by $(x-2)$, second M1 for find ctor.	ing
factor OR Note : If the	remainder theorem OR by inspection OR divide by $(x-2)$ to give a quadra by expanding and comparing coefficients. here is no evidence of inclusion of a term in x^2 somewhere in their division $x^2 + 2x \pm k$ to award M1	
factor (ref	using remainder theorem again OR by inspection OR factorising the quadra fer to general guidance) OR by comparing coefficients answer as shown	tic
Note : (<i>x</i> -	(x-3)(x+1) with no working is M0M0A0	

Question Number	Scheme	Marks
2(a)	$\left(1+3x^{2}\right)^{-\frac{1}{3}}=1+\left(-\frac{1}{3}\right)\left(3x^{2}\right)+\frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{2!}\left(3x^{2}\right)^{2}+\frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{3!}\left(3x^{2}\right)^{3}\dots$	M1
	$=1-x^{2}+2x^{4}-\frac{14}{3}x^{6}\dots$	A1A1 (3)
(b)	$f(x) = (1 - kx^{2})(1 + 3x^{2})^{\frac{1}{3}}$	
	$= \left(1 - kx^{2}\right) \left(1 - x^{2} + 2x^{4} - \frac{14}{3}x^{6}\right) \dots$	M1
	$=1-kx^2-x^2+kx^4+2x^4+$	M1
	$= 1 - (1+k)x^{2} + (k+2)x^{4} + \dots$	A1 (3)
(c)	<i>k</i> = 4	B1 (1) [7]
	Notes	[/]
(a) M1. for	using a hinemial expansion at least up to the term in us. Each term must h	ava at
	using a binomial expansion at least up to the term in x^6 . Each term, must h	ave at
	st, the correct power of x and the correct denominator. Allow slips in	
n(r)	$(n-1)(n-2)$. The expansion must start with 1. Must see evidence of $3x^2$ use	ed
coi	rectly at least once.	
A1: for tw	wo correct algebraic terms simplified.	
A1: for a	fully correct simplified expansion all on one line.	
(b)		
M1: for setting their binomial expansion at least up to the term in x^4 from (a) multiplied by $(1-kx^2)$		
M1: for multiplying out their expansion by $(1-kx^2)$ at least up to the term in x^4 . There will		
be 5 terms in the expansion. Ignore any terms beyond x^4		
A1: for a fully correct expansion (which need not be simplified)		
(c)		
B1: for <i>k</i>	= 4	

Question Number	Scheme	Marks
3(a)	$AC^{2} = 10^{2} + 10^{2}$ or $\left(\frac{1}{2}AC\right)^{2} = 5^{2} + 5^{2}$	B1
	$AE^2 = 8^2 + 50 \ (=114)$	M1
	AE = 10.67 = 10.7	A1 (3)
(b)	Required angle is between EX and the base where X is midpoint of AB	B1
	$\tan\theta = \frac{\mathrm{ht}}{\frac{1}{2}AD} = \frac{8}{5}$	M1 (any trig function for angle)
	$\theta = 57.99 = 58^{\circ}$	A1 (3) [6]
	Notes	[0]
(a) B1: for using Pythagoras theorem to find AC^2 or $\left(\frac{1}{2}AC\right)^2$ M1: for applying Pythagoras theorem correctly to find AE^2 , using a side of 8 cm and their $\left(\frac{1}{2}AC\right)^2$ A1: for $AE = 10.7$		
(Please ref	Fer to general guidance for rounding to significant figures)	
(b) B1: for identifying the required angle in a correct triangle . That is all that is required for this mark and can be gained by implication from subsequent correct work. M1: for any acceptable trigonometry to find the required angle. To use cos or sin they need the midpoint of <i>AB</i> , <i>DC</i> , <i>CB</i> or <i>AD</i> and the length from <i>E</i> to the midpoint to any of those sides is $\sqrt{89} = 9.43$. A1: for $\theta = 58^{\circ}$ (Please refer to general guidance for rounding to decimal places)		
Beware: Candidates must identify the correct angle so finding 58° from using 9.43 as AE and 8 as the height will give the correct answer, but this is B0M0		

Question Number	Scheme	Marks
4(a)	$S_{2} = 2a + d = \frac{2}{3}(a + 4d)$ $S_{4} = 2(2a + 3d) = a + 9d + 3$	M1 (either) A1 (both)
	4a = 5d $a = d + 1$	
(b)	(i) $d = 4$ (ii) $a = 5$ $S_{p+2} - S_p = t_{p+2} + t_{p+1}$	dM1A1A1 (5)
	5+4(p+1)+5+4p=110	M1A1
	14 + 8p = 110	
	<i>p</i> =12	A1 cso (3)
	Alt: Use difference of sums with formula for sum (M1 complete method, A1 correct equation A1 correct answer)	[8]

(a)

Notes

M1: for either a **correct** equation for S_2 **OR** S_4

A1: for **correct** equations for both S_2 **AND** S_4

dM1: for forming **and** attempting to solve **TWO** simultaneous equations in *a* and *d* only. This mark is dependent on the first method mark. Please check carefully that **both** equations are used to find *a* and *d*. a = 5 and d = 4 is a common answer coming from using only 4a = 5d. (i)

A1: for d = 4

(ii)

A1: for a = 5

(b)

M1: for the difference of S_{p+2} and S_p equated to the sum of t_{p+2} and t_{p+1} . Uses a+(n-1)d for both and equates to 110, with an attempt to find p. The method must be complete for this mark.

A1: for fully correct substitution, so 5+4(p+2-1)+5+(p+1-1)=110 is fine for this mark.

A1: for p=12 cso

Note: The final A mark is to be withheld from candidates who obtain a correct a and d from an incorrect method in part (a)

ALT

M1: for an attempt to find the difference of the summation formulae (using their a and d), equated to 110 with an attempt to find p. The summation formula must be correct for this mark.

$$S_{p+2} - S_p = \frac{p+2}{2} (2 \times 5 + (p+2-1)4) - \frac{p}{2} (2 \times 5 + (p-1)4) = 110$$

(p+2)(7+2p) - p(2p+3) = 110
8p+14 = 110
p = 12
for a fully correct substitution into S with correct a and a

A1: for a fully correct substitution into $S_{p+2} - S_p$ with correct *a* and *d*.

A1: for $p = 12 \operatorname{cso}$

Note: The final A mark is to be withheld from candidates who obtain a correct a and d from an incorrect method in part (a)

5(a) $3(\sin x \cos \alpha + \cos x \sin \alpha) = 5(\sin x \cos \alpha - \cos x \sin \alpha)$ M1 $8\cos x \sin \alpha = 2\sin x \cos \alpha$ A1 $8\cos x \sin \alpha = 2\sin x \cos \alpha$ M1 $1 \tan x = 4 \tan \alpha$ dM1 $\tan x = 4 \tan \alpha$ dM1 (b) $\tan 2y = 4 \tan 30$ M1A1 $\tan 2y = 2.30940$ M1A1 $2y = 66.586, 246.58, 426.58$ dM1 (any correct value) $y = 123^{\circ}$ A1 (4) [9] 1^{st} M1 for using the given identity to expand $3\sin(x + \alpha)$ and $5\sin(x - \alpha)$.Allow $5\sin(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{rd} M1 for using the identity to expand $3\sin(x + \alpha)$ and $5\sin(x - \alpha)$.Allow $5\sin(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{rd} M1 for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1^{st} A1, for collecting like terms at the beginning or near the end. 2^{rd} A1, for the correct answer and solution as given. You must see all three stages for the M marka as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1M0M0A0M1:for using the given identity to expand $3\sin(x + \alpha)$ and $5\sin(x - \alpha)$.A1:for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ M1:for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1:for simplifying the given result.	Question Number	Scheme	Marks
$8 \frac{\sin \alpha}{\cos \alpha} = 2 \frac{\sin x}{\cos x}$ $4 MI$ $\tan x = 4 \tan \alpha$ $dMI AI$ (5) $\tan 2y = 4 \tan 30$ $\tan 2y = 2.30940$ $2y = 66.586, 246.58, 426.58$ $dMI (any correct value)$ $y = 123^{\circ}$ AI (4) $[9]$ $(a) In general, M marks;$ $I^{st} MI for using the given identity to expand 3\sin(x + \alpha) and 5\sin(x - \alpha). Allow 5\sin(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x\sin(-\alpha)\} 2^{nd} MI for dividing their expansion by either \cos \alpha AND \cos x or \sin \alpha AND \sin x This is dependent on the first M mark. 3^{nd} MI for collecting like terms at the beginning or near the end. 2^{nd} AI, for collecting like terms at the beginning or near the end. 2^{nd} AI, for collecting like terms at the beginning or near the end. 2^{nd} AI, for the correct answer and solution as given. You must see all three stages for the M marke as above so do not allow for example; 8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha This scores MIA1M0M0A0 MI: for using the given identity to expand 3\sin(x + \alpha) and 5\sin(x - \alpha). All: for simplifying the expansion to 8\cos x \sin \alpha = 2\sin x \cos \alpha dMI: for using the given identity to convert their rearranged equation in terms of \tan x and \tan \alpha Al?: for achieving the given result.$		$3(\sin x \cos \alpha + \cos x \sin \alpha) = 5(\sin x \cos \alpha - \cos x \sin \alpha)$	M1
$ \begin{array}{ c c c c c } \hline \cos \alpha & \cos x \\ & \tan x = 4 \tan \alpha & & & & & & & & & & & & & & & & & &$		$8\cos x \sin \alpha = 2\sin x \cos \alpha$	A1
(b) $\tan 2y = 4 \tan 30$ $\tan 2y = 2.30940$ 2y = 66.586, 246.58, 426.58 $y = 123^{\circ}$ (d) If (any correct value) $y = 123^{\circ}$ (a) In general, M marks; 1^{st} M1 for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. Allow $5\sin(x-\alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{ad} M1 for dividing their expansion by either $\cos \alpha$ AND $\cos x$ or $\sin \alpha$ AND $\sin x$ This is dependent on the first M mark. 3^{rd} M1 for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1^{st} A1, for collecting like terms at the beginning or near the end. 2^{ad} A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4 \tan \alpha$ This scores M1A1M0M0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.			dM1
(b) $tan 2y = 2.30940, 2y = 66.586, 246.58, 426.58$ $y = 123^{\circ}$ (a) In general, M marks; $tan 2y = 2.30940, 2y = 66.586, 246.58, 426.58$ (b) $y = 123^{\circ}$ (c) A1 (d) (any correct value) (e) (a) In general, M marks; $t^{st} MI \text{ for using the given identity to expand } 3sin(x+\alpha) \text{ and } 5sin(x-\alpha).$ Allow $5sin(x-\alpha) = 5\{sin x cos(-\alpha) + cos x sin(-\alpha)\}$ $2^{nd} MI \text{ for using the given identity to expand } 3sin(x+\alpha) \text{ and } 5sin(x-\alpha).$ Allow $5sin(x-\alpha) = 5\{sin x cos(-\alpha) + cos x sin(-\alpha)\}$ $2^{nd} MI \text{ for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1^{st} AI, for collecting like terms at the beginning or near the end. 2^{nd} AI, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; 8cos x sin \alpha = 2sin x cos \alpha \Rightarrow tan x = 4tan \alpha This scoresM1A1M0M0A0M1: for using the given identity to expand 3sin(x+\alpha) and 5sin(x-\alpha).A1: for simplifying the expansion to 8cos x sin \alpha = 2sin x cos \alphadM1: for using the given identity to convert their rearranged equation in terms oftan x and tan \alphaA1*: for achieving the given result.$		$\tan x = 4\tan \alpha$	
$2y = 66.586, 246.58, 426.58$ $dM1 (any correct value)$ $y = 123^{\circ}$ $A1 (4) [9]$ Notes (a) In general, M marks; $1^{st} M1 \text{ for using the given identity to expand 3\sin(x+\alpha) and 5\sin(x-\alpha). Allow 5\sin(x-\alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\} 2^{nd} M1 \text{ for dividing their expansion by either \cos \alpha AND \cos x or \sin \alpha AND \sin x This is dependent on the first M mark. 3^{rd} M1 \text{ for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1^{st} A1, \text{ for collecting like terms at the beginning or near the end. 2^{nd} A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; 8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha This scores M1A1M0M0A0 M1: for using the given identity to expand 3\sin(x+\alpha) and 5\sin(x-\alpha). A1: for simplifying the expansion to 8\cos x \sin \alpha = 2\sin x \cos \alpha dM1: for using the given identity to convert their rearranged equation in terms of \tan x and \tan \alpha A1*: for achieving the given result.$	(b)	$\tan 2y = 4\tan 30$	M1A1
$y = 123^{\circ}$ Notes $y = 123^{\circ}$ $A1$ (4) $[9]$ $A1$ (5) $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{nd} $A1$ $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{nd} $A1$ $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{nd} $A1$ $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{nd} $A1$ $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ $A1$ $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ $A1$ $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(\alpha) + \cos(-\alpha) + \cos(-\alpha)\}$ $A1$ $(x - \alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(\alpha) + \sin(-\alpha) + \sin($		$\tan 2y = 2.30940$	
$\begin{bmatrix} y - 123 \\ (4) \\ [9] \end{bmatrix}$ Notes (a) In general, M marks; $1^{st} M1 \text{ for using the given identity to expand } 3\sin(x+\alpha) \text{ and } 5\sin(x-\alpha).$ Allow $5\sin(x-\alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ $2^{nd} M1 \text{ for dividing their expansion by either } \cos \alpha \text{ AND } \cos x \text{ or } \sin \alpha \text{ AND } \sin x$ This is dependent on the first M mark. $3^{rd} M1 \text{ for using the identity for tan This is dependent on BOTH previous M marks}$ In general, A marks; $1^{st} A1$, for collecting like terms at the beginning or near the end. $2^{nd} A1$, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1MOM0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.		2 <i>y</i> = 66.586, 246.58, 426.58	correct
 (a) In general, M marks; 1st M1 for using the given identity to expand 3sin (x+α) and 5sin (x-α). Allow 5sin (x-α) = 5{sin x cos(-α) + cos x sin (-α)} 2nd M1 for dividing their expansion by either cos α AND cos x or sin α AND sin x This is dependent on the first M mark. 3rd M1 for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1st A1, for collecting like terms at the beginning or near the end. 2nd A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; 8 cos x sin α = 2 sin x cos α ⇒ tan x = 4 tan α This scores M1A1M0M0A0 M1: for using the given identity to expand 3sin (x + α) and 5sin (x - α). A1: for rearranging their equation to 8 sin α / cos α = 2 sin x cos α dM1: for using the given identity to convert their rearranged equation in terms of tan x and tan α A1*: for achieving the given result. 		$y = 123^{\circ}$	(4)
1 st M1 for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. Allow $5\sin(x-\alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2 nd M1 for dividing their expansion by either $\cos \alpha$ AND $\cos x$ or $\sin \alpha$ AND $\sin x$ This is dependent on the first M mark. 3 rd M1 for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1 st A1, for collecting like terms at the beginning or near the end. 2 nd A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1M0M0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. dM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.			
Allow $5\sin(x-\alpha) = 5\{\sin x \cos(-\alpha) + \cos x \sin(-\alpha)\}$ 2^{nd} M1 for dividing their expansion by either $\cos \alpha$ AND $\cos x$ or $\sin \alpha$ AND $\sin x$ This is dependent on the first M mark. 3^{rd} M1 for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1^{st} A1, for collecting like terms at the beginning or near the end. 2^{nd} A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1M0M0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. dM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.			
2 nd M1 for dividing their expansion by either $\cos \alpha$ AND $\cos x$ or $\sin \alpha$ AND $\sin x$ This is dependent on the first M mark. 3 rd M1 for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1 st A1, for collecting like terms at the beginning or near the end. 2 nd A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1M0M0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.			
 3rd M1 for using the identity for tan This is dependent on BOTH previous M marks In general, A marks; 1st A1, for collecting like terms at the beginning or near the end. 2nd A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; 8 cos x sin α = 2 sin x cos α ⇒ tan x = 4 tan α This scores M1A1M0M0A0 M1: for using the given identity to expand 3sin(x+α) and 5sin(x-α). A1: for simplifying the expansion to 8 cos x sin α = 2 sin x cos α dM1: for rearranging their equation to 8 sin α/cos α = 2 sin x cos α dM1: for using the given identity to convert their rearranged equation in terms of tan x and tan α A1*: for achieving the given result. 			
In general, A marks; 1 st A1, for collecting like terms at the beginning or near the end. 2 nd A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1M0M0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.			S
2 nd A1, for the correct answer and solution as given. You must see all three stages for the M marks as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1M0M0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.	In	general, A marks;	
as above so do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ This scores M1A1M0M0A0 M1: for using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$. A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.			r the M marks
A1: for simplifying the expansion to $8\cos x \sin \alpha = 2\sin x \cos \alpha$ dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.	as above s	o do not allow for example; $8\cos x \sin \alpha = 2\sin x \cos \alpha \Rightarrow \tan x = 4\tan \alpha$ The result of the resu	
dM1: for rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe. ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.	M1: for	using the given identity to expand $3\sin(x+\alpha)$ and $5\sin(x-\alpha)$.	
ddM1: for using the given identity to convert their rearranged equation in terms of tan x and tan α A1*: for achieving the given result.			
ddM1: for using the given identity to convert their rearranged equation in terms of $\tan x$ and $\tan \alpha$ A1*: for achieving the given result.	dM1: for	r rearranging their equation to $8\frac{\sin \alpha}{\cos \alpha} = 2\frac{\sin x}{\cos x}$ oe.	
A1*: for achieving the given result.		or using the given identity to convert their rearranged equation in terms of	
There must be no errors in their work for the award of this mark. (b)			

M1: for using the **given** result from part (a) to substitute 2y for x, and 30° for α . A1: for $\tan 2y = \frac{4\sqrt{3}}{3} = 2.30940...$ accept $\tan 2y = 2.3$ dM1: for any correct value for 2y (correct to 1 dp or better), or any correct valid value for y (This mark can implied from the correct answer) **Dependent on 1**st **M mark**. A1: for $y = 123^{\circ}$. Ignore extra values outside of the required range. **SC**: $\tan 2y = 4 \tan 30^{\circ} \Rightarrow y = 33^{\circ}$ implies M1A1M1A0 **Note:** You will see $\tan 2y = 4 \tan 30^{\circ} \Rightarrow y = 123^{\circ}$ because candidates will leave the calculation in their calculators. This is full marks.

Question Number	Scheme	Marks	
6(a)	$x^5 = 1024, x = 4$	M1,A1 (2)	
(b)	$7y - 3 = 3^4 = 81, y = 12$	M1,A1 (2)	
(c)	$2\log_a 5 + 8\log_a 5 = 10$ or $\log_a 25 + 4\log_a 25 = 10$	M1	
	$\log_a 5 = 1 \text{or} \log_a 25 = 2$	M1	
	<i>a</i> =5	A1 (3)	
(d)	$\frac{1}{\log_7 b} - 2\log_7 b + 1 = 0 \qquad \text{(or change to base } b\text{)}$	M1	
	$1 - 2(\log_7 b)^2 + \log_7 b = 0$	dM1	
	$(2\log_7 b+1)(\log_7 b-1)=0$	ddM1	
	$\log_7 b = -\frac{1}{2}$ $b = 7^{-\frac{1}{2}} (= 0.3779 = 0.378)$	A1	
	$\log_7 b = 1 b = 7$	A1 (5)	
		[12]	
	Notos		
(a)	Notes		
M1: 'un	does' the log to write $x^5 = 1024$		
	x = 4		
(b)	1A1 for $x = 4$ seen only		
	<i>y</i> =12		
(c)	first M mark is for manipulating the logs so they can be combined into a sir	ala log	
	M1: the first M mark is for manipulating the logs so they can be combined into a single log. Eg. $2\log_a 5 + 8\log_a 5 = 10$ or $\log_a 25 + 4\log_a 25 = 10$ or $\log_a 25 + \log_a 625^2 = 10$		
	second M mark is for combining the logs \mathcal{L}_a		
Eg.,	$\log_a 5 = 1$ or $\log_a 25 = 2$ or $\log_a 9765625 = 10$		
	5 note $a = \pm 5$ is A0		
SU: Beca	use $5^2 = 25$ and $5^4 = 625$ you will see the following or similar;		

 $2+2\times 4=2+8=10 \Longrightarrow a=5$ Award full marks for a correct answer of a = 5 seen from this method. (d) M1: for changing the base of the log correctly either b $\log_b 7 = \frac{\log_7 7}{\log_7 b}$ or $\log_7 b = \frac{\log_b b}{\log_7 7}$ dM1: for forming a 3 term quadratic in either $\log_b 7$ or $\log_7 b$ **Dependent on first M mark** $1-2(\log_{2} b)^{2} + \log_{2} b = 0$ or $(\log_{b} 7)^{2} + \log_{b} 7 - 2 = 0$ ddM1: for solving their 3TQ and achieving two roots of their equation **Dependent on both M marks in (d)** $(2\log_7 b+1)(\log_7 b-1)=0$ or $(\log_b 7-1)(\log_b 7+2)=0$ A1: for **EITHER** $\log_7 b = -\frac{1}{2} \implies b = 7^{-\frac{1}{2}} (= 0.3779... = 0.378)$ or $\log_b 7 = -2 \Longrightarrow b^{-2} = 7 \Longrightarrow b = 7^{-\frac{1}{2}} = \frac{1}{\sqrt{7}}$ (accept awrt 0.378) **OR** $\log_{b} 7 = 1$ so b = 7A1: for BOTH correct answers SC: some candidates are giving $1-2+1=0 \Rightarrow \log_b 7-1=0 \Rightarrow b=7$ Award first M mark only. Beware of $2\log_7 b = 0.5\log_b 7 \Rightarrow b = \frac{1}{\sqrt{7}}$ This is M0. A method using Trial and Improvement is M0

Question Number	Scheme	Marks
7(a)	Missing values -2.59, -1.17, 1.66 (B1B0 one correct; B1B1 all correct)	B1B1 (2)
(b)	All points plotted correctly within half of one square All points joined up in a smooth curve	B1ft B1ft (2)
(c)	$\log_2 7 = x$	(_)
	$7 = 2^x$ $2^x - 4 = 3$	M1
	Draw line $y=3$ or vertical from point on graph where $y=3$ to x-axis	M1
	$\log_2 7 = 2.8$	A1 (3)
(d)	$2^x = 7 - 3x$	
	$y = 2^x - 4 = 3 - 3x$	M1A1
	Draw line $y=3-3x$ x=1.4	M1(their line) A1 (4) [11]
		-

(a)

Notes

B1: for one correct value

B1: for all values correct

(b)

B1ft: for all points plotted correctly within half of one square

B1ft: points joined up in a smooth curve

NOTE Part (c) and (d) must have evidence of their graph being used. (c)

M1: for 'undoing' the log and substituting into $y = 2^x - 4 \Rightarrow y = 7 - 4 = 3$

OR
$$y = 2^{x} - 4 \Longrightarrow 2^{x} = y + 4 \Longrightarrow x = \log_{2}(y + 4)$$
$$\log_{2} 7 = \log_{2}(y + 4) \Longrightarrow y = 3$$

Note: an answer of 2.80.. without working or evidence of a mark or line on their graph is M0 M1: for drawing the line y = 3 or vertical from point on graph where y = 3 to x-axis or some evidence of using their graph from y = 3.

A1: for x = 2.8

(d)

M1; for attempting to re-arrange the equation to give $2^x - 4 = \pm k \pm 3x$ $k \neq 7$ or 0

A1: for $2^x - 4 = 3 - 3x$

M1: for drawing their 'y = 3 - 3x' (look for intersections at (0, 3) and (1, 0) for the correct line) but it **must** be in the form $y = \pm k \pm 3x$ $k \neq 7$ or 0

A1: for x = 1.4

Note on Rounding

Some candidates are giving answers in (c) and (d) to 2 dp. Penalise only once (the first time) **PROVIDED** the answers given **both** round to 2.8 and 1.4 respectively. If answers given are for example, (c) 2.83 (d) 1.45, then this loses both A marks because part (c) is rounded incorrectly and part (d) rounds to 1.5 which is incorrect.

Question Number	Scheme	Marks
8(a)	(i) $\frac{2}{3}\mathbf{b} - \mathbf{a}$	B1
	(ii) $\overrightarrow{OE} = \overrightarrow{OA} + \frac{2}{5}\overrightarrow{AD} = \mathbf{a} + \frac{2}{5}\left(\frac{2}{3}\mathbf{b} - \mathbf{a}\right) = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b}$	M1A1
	(iii) $\overrightarrow{BE} = \overrightarrow{OE} - \overrightarrow{OB} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b} - \mathbf{b} = \frac{3}{5}\mathbf{a} - \frac{11}{15}\mathbf{b}$	M1A1 (5)
(b)	$\overrightarrow{FE} = \overrightarrow{OE} - \overrightarrow{OF} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b} - \lambda\mathbf{a}$	M1A1
	F, E, B collinear $\frac{\frac{3}{5} - \lambda}{\frac{4}{15}} = \frac{\frac{3}{5}}{-\frac{11}{15}}$	M1A1
	$\frac{3-5\lambda}{4} = \frac{3}{-11}$ $\lambda = \frac{9}{11}$	A1
		(5)
	$\frac{\mathbf{ALT}}{\overline{OF} + \overline{FB}} = \overline{OB}$	M1
	$\lambda \mathbf{a} + \mu \left(-\frac{3}{5} \mathbf{a} + \frac{11}{15} \mathbf{b} \right) = \mathbf{b}$	A1
	$\mu = \frac{15}{11} \lambda = \frac{3}{5}\mu$	M1A1
	$\lambda = \frac{9}{11}$	A1 (5)
(c)	$\Delta OFB = 5 \text{ units}^2 \Rightarrow \Delta OAB = \frac{11}{9} \times 5 \text{ units}^2$	M1
	$\Delta OAD = \frac{2}{3} \Delta OAB = \frac{2}{3} \times \frac{55}{9} = \frac{110}{27} \text{ units}^2$	M1A1
	$\frac{ALT}{\frac{\text{area }\Delta OFB}{\text{area }\Delta OAD}} = \frac{9/11}{2/3} = \frac{27}{22}$	M1
	area $\triangle OAD = \frac{22}{27} \times 5 = \frac{110}{27}$	M1A1 (3) [13]

Notes
(a) (i)
B1: for
$$\frac{2}{3}\mathbf{b}-\mathbf{a}$$

(ii)
M1: for $\overline{\partial E} = \overline{\partial A} + \frac{2}{5}\overline{AD}$ (for the vector statement)
(or for any other valid path)
A1: $\overline{\partial E} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b}$
(iii)
M1: for $\overline{BE} = \overline{\partial E} - \overline{\partial B}$ (for the vector statement)
(again for any other valid path)
A1: $\overline{BE} = \frac{3}{5}\mathbf{a} - \frac{11}{15}\mathbf{b}$
(b)
M1: for $\overline{FE} = \overline{\partial E} - \overline{\partial F}$
A1: for $\overline{FE} = \overline{\partial E} - \overline{\partial F}$
A1: for $\overline{FE} = \frac{3}{5}\mathbf{a} + \frac{4}{15}\mathbf{b} - \lambda \mathbf{a} \left(=\mathbf{a}\left(\frac{3}{5}-\lambda\right) + \frac{4}{15}\mathbf{b}\right)$
M1: for using their \overline{FE} and \overline{BE} to form;
 $\frac{3}{5} - \lambda}{\frac{4}{15}} = \frac{3}{-\frac{11}{15}}$ or $\frac{3}{5} - \lambda}{\frac{3}{5}} = \frac{4}{-\frac{11}{15}}$
A1: for the correct equation in λ
A1: $\lambda = \frac{9}{11}$
ALT
M1: for achieving μ and an expression for λ in terms of μ (or any other letter for the second constant)
M1: for achieving μ and an expression for λ in terms of μ

(c) M1: for stating and using that area of triangle $\triangle OAB = \frac{11}{9} \times \text{ area of } \triangle OFB \Rightarrow \triangle OAB = \frac{11}{9} \times 5$ Note: area of triangle OAB = the reciprocal of their $\lambda \times 5$ for stating and using that area of $\triangle OAD = \frac{2}{3} \times \text{ area of } \triangle OAB$ M1: A1: area of triangle $OAD = \frac{110}{27}$ ALT 1 M1: for the ratio of areas of triangle OFB and triangle OAD as follows; $\frac{\operatorname{area} \Delta OAB}{\operatorname{area} \Delta OFB} = \frac{11}{9}$ and $\frac{\operatorname{area} \Delta OAD}{\operatorname{area} \Delta OAB} = \frac{2}{3} \implies$ $\frac{\text{area } \Delta OAD}{\text{area } \Delta OFB} = \frac{11}{9} \times \frac{2}{3} = \frac{22}{27}$ M1: for $\frac{\Delta OAD}{5} = \frac{22}{27}$ A1: area of triangle *OAD* $\frac{110}{27}$ ALT 2 M1: for using $\frac{1}{2}ab\sin C$ on triangles *OAD* and *OFB* Triangle *OFB*: $\frac{1}{2} \times \frac{9}{11} |\mathbf{a}| \times |\mathbf{b}| \times \sin \theta = 5$ **AND** Area $OAD = \frac{1}{2} \times |\mathbf{a}| \times \frac{2}{3} |\mathbf{b}| \times \sin \theta$ M1: for substituting . $\sin \theta = \frac{110}{9 |\mathbf{a}||\mathbf{b}|}$ into $\Rightarrow \text{Area } OAD = \frac{|\mathbf{a}||\mathbf{b}|}{3} \times \frac{110}{9 |\mathbf{a}||\mathbf{b}|} \left(=\frac{110}{27}\right)$ A1: area of triangle *OAD* $\frac{110}{27}$

Question Number	Scheme	Marks
9 (a) (i)	$\alpha + \beta = \frac{5}{3}, \alpha\beta = -\frac{4}{3}$ $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$	B1 Award in (i) or (ii) M1
	$\frac{\frac{25}{9} + \frac{8}{3}}{-\frac{4}{3}} = -\frac{49}{12}$	A1
	$\frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$ x ² - (sum) x + product (= 0)	B1 M1
	$x^{2} - \left(-\frac{49}{12}\right)x + 1 \ (=0)$ $12x^{2} + 49x + 12 = 0$	A1 (6)
(ii)	$2\alpha + \beta + \alpha + 2\beta = 3 \times \frac{5}{3} = 5$	B1
	$2\alpha + \beta + \alpha + 2\beta = 3 \times \frac{5}{3} = 5$ $(2\alpha + \beta)(\alpha + 2\beta) = 2\alpha^{2} + 5\alpha\beta + 2\beta^{2}$ $= 2(\alpha + \beta)^{2} + \alpha\beta, = 2 \times \frac{25}{9} - \frac{4}{3} = \frac{38}{9}$	M1,A1
	$x^2 - 5x + \frac{38}{9} (=0)$	M1
(b)	$9x^2 - 45x + 38 = 0$	A1 (5)
(b)	$f(x) = 3\left(x^2 - \frac{5}{3}x\right) - 4 = 3\left[\left(x - \frac{5}{6}\right)^2 - \frac{25}{36}\right] - 4$	M1
	$= 3\left(x - \frac{5}{6}\right)^2 - \frac{73}{12}$	A1A1 (3)
	(or by expanding $A(x+B)^2 + C$ and equating coeffs)	
(c)	$f(x) = -8 \implies 3\left(x - \frac{5}{6}\right)^2 - \frac{73}{12} = -8$	
	$f(x) = -8 \implies 3\left(x - \frac{5}{6}\right)^2 - \frac{73}{12} = -8$ $3\left(x - \frac{5}{6}\right)^2 = \frac{73}{12} - 8 < 0 \qquad \therefore \text{ no values of } x \text{ possible ie no real roots}$	M1A1cso (2)
	(or any other complete method M1; correct solution and conclusion A1)	[16]

B1: for writing down the product and sum of the roots. This could be embedded in their calculations for sum and product. M1: for forming the **correct** algebraic equation for the sum ie., $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$. A1: for the correct sum = $-\frac{49}{12}$ oe **Note:** $a^2 + b^2 = \frac{49}{9}$ B1: for product of roots = 1 (You may not see this explicitly, but can be implied if their constant in their formed equation M1: for forming an equation using their sum and product For this mark you **must see** $x^2 + (-sum)x + (+product)$ (=0) for the correct equation as shown including = 0 Accept equivalent integer values, eg A1: $24x^2 + 98x + 24 = 0$ (ii) for the sum of roots = 5B1: M1: for the algebraic product of roots. Multiplying out, simplifying to a minimally acceptable $m(\alpha + \beta)^2 + n\alpha\beta$ where $m \neq 0$ and $n \neq 0$ A1: for the product = $\frac{38}{9}$ M1: for forming an equation using their sum and product for the correct equation as shown = 0. If = 0 missing in part (i) do not penalise here A1: Accept equivalent integer values. again. (b) M1: for an attempt to complete the square. For this mark, they must take out 3 as the common factor in the term in x^2 and x (ignore the constant), and then complete the square (see General Guidance for minimally acceptable attempt) A1: for two of A, B or C correct A1: for A, B and C correct ALT M1: for $A(x+B)^2 + C = Ax^2 + 2ABx + B^2 + C \implies Ax^2 + 2ABx + B^2 + C \equiv 3x^2 - 5x - 4$ Must lead to values for A, B and C for this mark $\left(\Rightarrow A = 3, B = -\frac{5}{6}, C = -\frac{73}{12}\right)$ for two of A, B or C correct A1: A1: for A, B and C correct (c) M1: for $3\left(x-\frac{5}{6}\right)^2 - \frac{73}{12} = -8 \Rightarrow 3\left(x-\frac{5}{6}\right)^2 = -\frac{23}{12}$ or using $b^2 - 4ac$ on the **given** f(x) + 8 = 0A1: for a correct conclusion of eg., cannot find square root of negative number hence no real roots, or $b^2 - 4ac < 0$ hence no real roots. They **must** substitute correct values into $b^2 - 4ac$ This A mark is cso

Notes

(a) (i)

Question Number	Scheme	Marks
10 (a)	C is $(3,2)Or use ratio formula (correct) on either coordBoth coords correct$	M1 either correct A1 both (2)
(b)	Grad $AB = \frac{-2-4}{5-2} = -2$	B1
	Grad $DC = \frac{2-1}{3-1} = \frac{1}{2}$	B1
	$-2 \times \frac{1}{2} = -1$: perpendicular	B1 (3)
(c)	$y-1 = \frac{1}{2}(x-1)$ 2y = x+1	M1 A1
(d)	E is $(5,3)$	(2) M1A1 (2)
(e)	$AB = \sqrt{3^2 + 6^2} = 3\sqrt{5}$	M1 either
	$DE = \sqrt{4^2 + 2^2} = 2\sqrt{5}$ or $CD = \sqrt{5}$	A1 both
	Area of kite $=\frac{1}{2}AB \times DE = \frac{1}{2} \times 3\sqrt{5} \times 2\sqrt{5} = 15$ or $2 \times \frac{1}{2} \times 3\sqrt{5} \times \sqrt{5} = 15$	M1A1 (4)
	Alt: Determinant method:	
	Area $=\frac{1}{2}\begin{vmatrix} 2 & 1 & 5 & 5 & 2 \\ 4 & 1 & -2 & 3 & 4 \end{vmatrix}$	M1A1
	$=\frac{1}{2}(2-2+15+20-(6-10+5+4))=15$	M1A1 (4) [13]

Notes M1: for either correct x coordinate or y coordinate A1: for both coordinates correct Note: If you see either coord coming from an incorrect method M0 B1: for finding the gradient of *AB* B1: for finding the gradient of DC Do **not** accept vectors for gradients. B1: for using the perpendicular rule to show that AB and DC are perpendicular, or stating that for gradients to be perpendicular, one must be the negative reciprocal of the other, with a conclusion. eg., the negative reciprocal of -2 is $\frac{1}{2}$ Allow incorrect AB and CD here provided they are negatives reciprocals of each other. M1: for using the formula with coordinates (1,1) or (3, 2) and a gradient of $\frac{1}{2}$ or their gradient of DC from (b) to write down the equation of the line. If they use y = mx + c they must substitute x correctly, their gradient of *DC* from (b) **and** find *c* for the correct equation in the correct form 2y = x+1.

(d)

A1:

and y

(c)

(a)

(b)

M1: for either correct x coordinate or y coordinate

for both coordinates correct A1:

(e)

Method 1 M1: for finding either the length of $AB (= 3\sqrt{5})$ or the length of DE or CD (using the given cords for D and their E. The Pythagoras must be correct if their E is incorrect.

for both correct lengths of AB and DE or CD. A1:

M1: for area of kite $\frac{1}{2}$ × 'their' AB × 'their' DE

A1: for 15 (units²)

Method 2

- M1: for using the **CORRECT** formula for determinants with the given A, D, B, and 'their E'
- for a fully correct formula with correct coordinates A1:
- M1: for a correct calculation with the given A, D, B, and 'their E'

A1: for 15 (units²)

Method 3 (General marking guidance for using a combination of areas)

- M1: for attempting to calculate each individual area
- A1: for correct individual areas (four triangles will be) 5, 5, 2.5, 2,5 Large rectangle (24) and 3 triangles (6,1.5,1.5)
- M1: for a statement of the total area
- A1: for 15 (units²)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL