

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE In Further Pure Mathematics (4PM1) Paper 01R

### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.btec.co.uk</a>. Alternatively, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2019
Publications Code 4PM1\_01R\_2019\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

# **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
  - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- o B marks: unconditional accuracy marks (independent of M marks)

### Abbreviations

- o cao correct answer only
- o ft follow through
- o isw ignore subsequent working

- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

# No working

If no working is shown then correct answers normally score full marks
If no working is shown then incorrect (even though nearly correct) answers score no marks.

# With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.

### Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

# • Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

### **General Principles for Further Pure Mathematics Marking**

(but note that specific mark schemes may sometimes override these general principles)

### Method mark for solving a 3 term quadratic equation:

1. Factorisation:

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$  leading to  $x = ...$   
 $(ax^2 + bx + c) = (mx + p)(nx + q)$  where  $|pq| = |c|$  and  $|mn| = |a|$  leading to  $x = ...$ 

2. Formula:

Attempt to use the **correct** formula (shown explicitly or implied by working) with values for a, b and c, leading to x = ...

3. Completing the square:

$$x^{2} + bx + c = 0$$
:  $(x \pm \frac{b}{2})^{2} \pm q \pm c = 0$ ,  $q \neq 0$  leading to  $x = ...$ 

# Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

2. Integration:

Power of at least one term increased by 1.  $(x^n \to x^{n+1})$ 

### Use of a formula:

Generally, the method mark is gained by either

quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values

**or**, where the formula is <u>not</u> quoted, the method mark can be gained by implication from the substitution of correct values and then proceeding to a solution.

# **Answers without working:**

The rubric states "Without sufficient working, correct answers <u>may</u> be awarded no marks".

General policy is that if it could be done "in your head" detailed working would not be required. (Mark schemes may override this eg in a case of "prove or show...." **Exact answers:** 

When a question demands an exact answer, all the working must also be exact. Once a candidate loses exactness by resorting to decimals the exactness cannot be regained.

# **Rounding answers (where accuracy is specified in the question)**

Penalise only once per question for failing to round as instructed - ie giving more digits in the answers. Answers with fewer digits are automatically incorrect, but the isw rule may allow the mark to be awarded before the final answer is given.

June 2019 4PM1 Further Pure Mathematics Paper 1

|           | o 1                                                                              | N/ 1                |
|-----------|----------------------------------------------------------------------------------|---------------------|
| Question  | Scheme                                                                           | Marks               |
| number    | 10                                                                               |                     |
| 1 (a)     | $l = r\theta \Rightarrow r = \frac{12}{1.5} = 8$                                 | D.1                 |
|           | 1.5                                                                              | B1                  |
| (h)       | 1.5                                                                              | [1]<br>M1A1         |
| (b)       | $A = \frac{1.5}{2} \times 8^2 = 48 \text{ (cm}^2\text{)}$                        | [2]                 |
|           | ALT 1                                                                            | [2]                 |
|           |                                                                                  |                     |
|           | $A = \frac{l^2}{2\theta} = \frac{12^2}{2 \times 1.5} = 48 \text{ (cm}^2\text{)}$ | {M1A1}              |
|           | $2\theta$ 2×1.5                                                                  | [2]                 |
|           | ALT 2                                                                            |                     |
|           |                                                                                  | (3.54.4.4.)         |
|           | $A = \frac{1}{2}rl = \frac{1}{2} \times 8 \times 12 = 48 \text{ (cm}^2)$         | {M1A1}              |
|           |                                                                                  | [2]<br>otal 3 marks |
| (0)       |                                                                                  | nai 5 marks         |
| (a)<br>B1 | r=8                                                                              |                     |
|           |                                                                                  |                     |
| (b)       | $A = 48 \text{ (cm}^2\text{) units not required}$                                |                     |
| M1        | Use of $A = \frac{1}{2}r^2\theta$                                                |                     |
| A1        | $A = 48 \text{ (cm}^2\text{)}$ units not required                                |                     |
| ALT 1:    | •                                                                                |                     |
| M1        | $I^2$                                                                            |                     |
|           | Use of $A = \frac{l^2}{2\theta}$                                                 |                     |
| A1        | $A = 48 \text{ (cm}^2\text{)}$ units not required                                |                     |
| ALT 2:    |                                                                                  |                     |
| M1        | Use of $A = \frac{1}{2}rl$                                                       |                     |
| A1        | $A = 48 \text{ (cm}^2\text{) units not required}$                                |                     |

| Question<br>number | Scheme                                                                                                                                                                                                                                                             | Marks       |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2 (a)              | $\cos ABC = \frac{(2x)^2 + (4x)^2 - (3x)^2}{2 \times 2x \times 4x} = \frac{x^2 (4 + 16 - 9)}{x^2 (16)} = \frac{11}{16}$                                                                                                                                            | M1A1        |
|                    | $l = \sqrt{16^2 - 11^2} = 3\sqrt{15}$                                                                                                                                                                                                                              | M1          |
|                    | $\sin ABC = \frac{3\sqrt{15}}{16} *$ <b>ALT</b>                                                                                                                                                                                                                    | A1<br>[4]   |
|                    | $\sin^2 ABC = 1 - \frac{121}{256} = \frac{135}{256} \Rightarrow \sin ABC = \frac{3\sqrt{15}}{16} *$ $\frac{75\sqrt{15}}{64} = \frac{1}{2} \times 2x \times 4x \times \frac{3\sqrt{15}}{16} \Rightarrow x^2 = \frac{25}{16} \Rightarrow x = \frac{5}{4} \text{ oe}$ | {M1A1}      |
| (b)                | $\frac{75\sqrt{15}}{64} = \frac{1}{2} \times 2x \times 4x \times \frac{3\sqrt{15}}{16} \Rightarrow x^2 = \frac{25}{16} \Rightarrow x = \frac{5}{4} \text{ oe}$ (positive root only)                                                                                | M1A1<br>[2] |
|                    |                                                                                                                                                                                                                                                                    | tal 6 marks |
| (a)<br>M1          | Use the cosine rule, either form. If not for angle <i>ABC</i> there must be a method shown for obtaining <i>ABC</i>                                                                                                                                                | complete    |
| A1                 | Correct expression for cos ABC                                                                                                                                                                                                                                     |             |
| M1                 | Use of Pythagoras' leading to $l = \dots$                                                                                                                                                                                                                          |             |
| A1<br>ALT:         | Obtains the <b>given</b> expression for sin <i>ABC</i>                                                                                                                                                                                                             |             |
| M1                 | Use of $\sin^2 \theta + \cos^2 \theta = 1$ leading to $\sin^2 \theta =$                                                                                                                                                                                            |             |
| A1                 | Obtains the <b>given</b> expression for $\sin ABC$                                                                                                                                                                                                                 |             |
| (b)                |                                                                                                                                                                                                                                                                    |             |
| M1                 | Use of $\frac{1}{2}ab\sin C = \frac{75\sqrt{15}}{64}$ Need not be simplified.                                                                                                                                                                                      |             |
| A1                 | $x = \frac{5}{4}$ oe                                                                                                                                                                                                                                               |             |

| Question<br>number | Scheme                                                                                                             | Marks               |
|--------------------|--------------------------------------------------------------------------------------------------------------------|---------------------|
| 3 (a)              | $\log_3 9 = 2$                                                                                                     | B1<br>[1]           |
| (b)                | $\log_3 9t = \log_9 \left(\frac{12}{t}\right)^2 + 2 \Rightarrow \log_3 9 + \log_3 t = 2(\log_9 12 - \log_9 t) + 2$ | M1M1                |
|                    | $\log_3 9 + \log_3 t = 2 \left( \frac{\log_3 12}{\log_3 9} - \frac{\log_3 t}{\log_3 9} \right) + 2$                | M1                  |
|                    | $\Rightarrow \log_3 9 + \log_3 t = \log_3 12 - \log_3 t + 2$                                                       |                     |
|                    | $\Rightarrow 2\log_3 t = \log_3 12 \Rightarrow \log_3 t^2 = \log_3 12$                                             | A1                  |
|                    | $\Rightarrow t^2 = 12 \Rightarrow t = 2\sqrt{3}$                                                                   | M1A1                |
|                    | Tro                                                                                                                | [6]<br>otal 7 marks |
| (a)                |                                                                                                                    | tur / murks         |
| B1                 | $(\log_3 9 =) 2$                                                                                                   |                     |
| (b)                | The M marks can be seen anywhere in the solution                                                                   |                     |
| M1                 | Use of $\log AB = \log A + \log B$ or $\log \frac{A}{B} = \log A - \log B$                                         |                     |
| M1                 | Use of $\log A^n = n \log A$                                                                                       |                     |
| M1                 | Use of $\log_a x = \frac{\log_b x}{\log_b a}$                                                                      |                     |
| A1                 | Simplifying to $2\log_3 t = \log_3 12$ oe or $\log_3 \left(\frac{9t^2}{12}\right) = 2$ oe                          |                     |
| M1                 | Simplify to $t^2 =$                                                                                                |                     |
| A1                 | $t = 2\sqrt{3}$                                                                                                    |                     |

| Question number | Scheme                                                                                                                   | Marks                 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 4 (a)           | $f'(x) = 3e^{3x} (1+2x)^{\frac{1}{2}} + e^{3x} \times \frac{1}{2} \times 2(1+2x)^{-\frac{1}{2}}$                         | M1A1                  |
|                 | $\Rightarrow f'(x) = \frac{3e^{3x}(1+2x) + e^{3x}}{\sqrt{1+2x}} \Rightarrow f'(x) = \frac{2e^{3x}(2+3x)}{\sqrt{1+2x}} *$ | M1A1<br>[4]           |
| (b)             | When $x = 0$                                                                                                             |                       |
|                 | $f'(0) = \frac{2e^{0}(2+0)}{\sqrt{1+0}} = 4$ Gradient of Normal $= -\frac{1}{4}$                                         | B1B1                  |
|                 | $f(0) = e^0 \sqrt{1 + 2 \times 0} = 1$                                                                                   | B1                    |
|                 | Equation of Normal to curve $y = f(x)$ when $x = 0$                                                                      |                       |
|                 | $y-1 = -\frac{1}{4}(x-0)$                                                                                                | M1A1                  |
|                 | $\Rightarrow x + 4y - 4 = 0$                                                                                             | A1<br>[6]             |
|                 | Total                                                                                                                    | 10 marks              |
| (a)             |                                                                                                                          |                       |
| M1              | Use of the product rule. Sum of two terms (either way round) with $x^n$ -                                                | $\rightarrow x^{n-1}$ |
|                 | (Condone $e^{3x}$ instead of $3e^{3x}$ )                                                                                 |                       |
| A1              | Both terms correct                                                                                                       |                       |
| M1              | Simplifying their product rule expression to a single expression with                                                    |                       |
|                 | denominator $a\sqrt{1+2x}$ where a is a constant                                                                         |                       |
| A1              | Obtains the <b>given</b> expression                                                                                      |                       |
| (b)             |                                                                                                                          |                       |
| B1              | f'(0) = 4                                                                                                                |                       |
| B1              | Gradient of Normal $= -\frac{1}{4}$                                                                                      |                       |
| B1              | f(0) = 1                                                                                                                 |                       |
| M1              | Substitution of (0, '1') and 'gradient of normal' (but not 4) into the forr line                                         | nula for a            |
| A1              | $y-1 = -\frac{1}{4}(x-0)$ oe                                                                                             |                       |
| A1              | x + 4y - 4 = 0                                                                                                           |                       |

| Question<br>number | Scheme                                                                                                                                    | Marks        |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| 5                  |                                                                                                                                           |              |  |  |  |  |
|                    | $A = \pi (3r)^2 = 9\pi r^2 \Rightarrow \frac{dA}{dr} = 18\pi r$                                                                           | M1           |  |  |  |  |
|                    | dA                                                                                                                                        |              |  |  |  |  |
|                    | $A = \pi (3r)^{2} = 9\pi r^{2} \Rightarrow \frac{dA}{dr} = 18\pi r$ $\delta A \approx \frac{dA}{dr} \times \delta r = 18\pi r (\delta r)$ |              |  |  |  |  |
|                    | $\frac{\delta A}{A} \approx \frac{18\pi r}{A} \delta r = \frac{18\pi r}{9\pi r^2} \delta r = 2\frac{\delta r}{r}$                         | M1           |  |  |  |  |
|                    | So when $\frac{\delta r}{r} = 0.05\% \Rightarrow \frac{\delta A}{A} \approx 0.1\%$ so the area increases by about 0.1%                    | M1A1         |  |  |  |  |
|                    | ALT                                                                                                                                       |              |  |  |  |  |
|                    | Radius (after increase) = $3r \times \left(1 + \frac{0.05}{100}\right)$                                                                   | {M1}         |  |  |  |  |
|                    | = 3.0015r                                                                                                                                 | {B1}         |  |  |  |  |
|                    | Area before increase = $\pi (3r)^2 = 9\pi r^2$ Area after increase =                                                                      |              |  |  |  |  |
|                    | $A = \pi (3.0015r)^2 = 9.00900225\pi r^2$                                                                                                 | {M1}         |  |  |  |  |
|                    | Percentage increase = $\frac{9.00900225\pi r^2 - 9\pi r^2}{9\pi r^2} \times 100 = 0.100025 \approx 0.1\%$                                 | {M1}<br>{A1} |  |  |  |  |
|                    | so the area increases by about 0.1%                                                                                                       |              |  |  |  |  |
|                    |                                                                                                                                           | 5 marks      |  |  |  |  |
| M1                 | Differentiate A wrt r                                                                                                                     |              |  |  |  |  |
| B1                 | Use of $\delta A \approx \frac{dA}{dr} \times \delta r$                                                                                   |              |  |  |  |  |
| M1                 | Use of $\frac{\delta A}{A}$                                                                                                               |              |  |  |  |  |
| M1                 | Use of $\frac{\delta r}{r} = 0.05\%$                                                                                                      |              |  |  |  |  |
| A1                 | Area increases by about 0.1%                                                                                                              |              |  |  |  |  |
| ALT:               |                                                                                                                                           |              |  |  |  |  |
| M1                 | Finding the radius after the increase (may be implied by $3.0015r$ )                                                                      |              |  |  |  |  |
| B1                 | 3.0015r (may be implied by a correct area after the increase)                                                                             |              |  |  |  |  |
| M1                 | Finding the area after the increase                                                                                                       |              |  |  |  |  |
| M1                 | Use of $\frac{\text{Area (new)-Area (original)}}{\text{Area (original)}} \times 100$                                                      |              |  |  |  |  |
| A1                 | Area increases by about 0.1%                                                                                                              |              |  |  |  |  |

| Question<br>number | Scheme                                                                                                   | Marks          |
|--------------------|----------------------------------------------------------------------------------------------------------|----------------|
| 6 (a)              | $a = 4 \times 1 - 3 = 1,$ $(d = 4)$                                                                      | B1             |
|                    | $\sum_{r=1}^{n} 4r - 3 = \frac{n}{2} (2 \times 1 + (n-1)4) = n(2n-1)*$                                   | M1A1 [3]       |
| (b)                | $n(2n-1) > 1000 \Rightarrow 2n^2 - n - 1000 > 0$                                                         | M1             |
|                    | $\frac{-(-1)\pm\sqrt{(-1)^2-4\times2\times(-1000)}}{2\times2} \Rightarrow n > 22.612 \Rightarrow n = 23$ | M1A1<br>[3]    |
| (c)                | $3t_{(n+7)} + 18 = S_{(n+4)}$                                                                            |                |
|                    | $\Rightarrow 3\left[4(n+7)-3\right]+18=(n+4)\left[2(n+4)-1\right]$                                       | M1<br>A1       |
|                    | $\Rightarrow 2n^2 + 3n - 65 = 0$                                                                         | AI             |
|                    | $2n^2 + 3n - 65 = (2n+13)(n-5) = 0 \Rightarrow n = 5$                                                    | depM1A1<br>[4] |
|                    | Tot                                                                                                      | al 10 marks    |
| (a)<br>B1          | a = 1                                                                                                    |                |
| M1                 | Use of $S = \frac{n}{2} (2a + (n-1)d)$ or $S = \frac{n}{2} (a+L)$                                        |                |
| A1                 | Obtains the <b>given</b> expression                                                                      |                |
| (b)                |                                                                                                          |                |
| M1                 | Sets up a 3 term quadratic from the given information (Condone = rat                                     | her than >)    |
| M1<br>A1           | Solve their 3 term quadratic (May be implied by 22.6) $n = 23$                                           |                |
| (c)                | n – 23                                                                                                   |                |
| M1                 | Substitution of $n + 7$ and $n + 4$                                                                      |                |
| A1                 | A correct 3 term quadratic                                                                               |                |
| depM1              | Solve their 3 term quadratic (Dependent on previous M mark)                                              |                |
| A1                 | n = 5 (must reject other answer if offered)                                                              |                |

| Question number | Scheme                                                                                                                                                               | Marks       |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7 (a)           | $\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}$                                                                                                    | M1          |
|                 | $\overrightarrow{BC} = -(15\mathbf{i} - 6\mathbf{j}) + 8\mathbf{i} + \mathbf{j} = -7\mathbf{i} + 7\mathbf{j}$                                                        | A1<br>[2]   |
| (b)             | $\left  \overrightarrow{BC} \right  = \sqrt{98} = \left( 7\sqrt{2} \right)$                                                                                          | B1          |
|                 | Unit vector is $\frac{1}{\sqrt{98}} \left( -7\mathbf{i} + 7\mathbf{j} \right)$ oe                                                                                    | B1<br>[2]   |
| (c)             | $\left(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}\right) \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j}$                                                       | B1          |
|                 | $\Rightarrow \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})$                                             | M1          |
|                 | $\Rightarrow \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})$                                            | M1          |
|                 | Conclusion: $\overrightarrow{MN}$ and $\overrightarrow{MC}$ are parallel on (and have same point of origin $(M)$ ) hence they are collinear.                         | A1<br>[4]   |
|                 | ALT 1                                                                                                                                                                |             |
|                 | $(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}) \ \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} \ \text{or} \ \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j}$ |             |
|                 | $\Rightarrow \overline{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})$                                                   | {B1}        |
|                 | $\Rightarrow \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j}) \text{ or}$                                  | {M1}        |
|                 | $\Rightarrow \overrightarrow{NC} = -(5\mathbf{i} - 2\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$                                            | {M1}        |
|                 | Conclusion: $\overrightarrow{MN}$ and $\overrightarrow{NC}$ are parallel oe (and share the same point (N)) hence they are collinear.                                 |             |
|                 | ALT 2                                                                                                                                                                | {A1}<br>[4] |
|                 | $(\overrightarrow{OM} = 4\mathbf{i} - 3\mathbf{j}) \ \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j}  \text{or}  \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j}$   |             |
|                 | $\Rightarrow \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})$                                            | {B1}        |
|                 | $\Rightarrow \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})$                                             | {M1}        |
|                 | Conclusion: $\overrightarrow{MC}$ and $\overrightarrow{NC}$ are parallel oe(and share the same point                                                                 |             |
|                 | (C)) hence they are collinear.                                                                                                                                       | {M1}        |
|                 |                                                                                                                                                                      | {A1}<br>[4] |
|                 | Tota                                                                                                                                                                 | al 8 marks  |

```
(a)
                     \overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC}
   M1
                     \overrightarrow{BC} = -7\mathbf{i} + 7\mathbf{j}
   A1
   (b)
                     \sqrt{98} oe
   B1
   B1
                      \frac{1}{\sqrt{98}}\left(-7\mathbf{i}+7\mathbf{j}\right) oe
   (c)
                     \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} (may be implied by \overrightarrow{MN})
   B1
                     \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})
  M1
  M1
                     \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 4\mathbf{i} + 4\mathbf{j})
                     Correct conclusion from correct working e.g. \overrightarrow{MC} = 4\overrightarrow{MN}
   A1
ALT 1
   B1
                     \overrightarrow{ON} = 5\mathbf{i} - 2\mathbf{j} or \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j} (may be implied by \overrightarrow{MN} or \overrightarrow{NC})
                     \overrightarrow{MN} = -(4\mathbf{i} - 3\mathbf{j}) + 5\mathbf{i} - 2\mathbf{j} (= \mathbf{i} + \mathbf{j})
  M1
                     \overrightarrow{NC} = 10\mathbf{i} - 4\mathbf{j} - 7\mathbf{i} + 7\mathbf{j} (= 3\mathbf{i} + 3\mathbf{j}) \text{ or } -(5\mathbf{i} - 2\mathbf{j}) + 8\mathbf{i} + \mathbf{j} (= 3\mathbf{i} + 3\mathbf{j})
  M1
   A1
                     Correct conclusion from correct working e.g. \overrightarrow{NC} = 3\overrightarrow{MN}
ALT 2
   B1
                     \overrightarrow{NB} = 10\mathbf{i} - 4\mathbf{j} (may be implied by \overrightarrow{NC})
  M1
                     \overrightarrow{MC} = -(4\mathbf{i} - 3\mathbf{j}) + 8\mathbf{i} + \mathbf{j} = (4\mathbf{i} + 4\mathbf{j})
  M1
   A1
                     \overrightarrow{NC} = 10i - 4j - 7i + 7j (= 3i + 3j)
                     Correct conclusion from correct working e.g. \overrightarrow{NC} = \frac{3}{4}\overrightarrow{MC}
                     For part c: Send any geometrical solutions to review
```

| Question number            | Scheme                                                                          |                                               |                         |            |                       | Marks        |        |                    |                     |
|----------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|------------|-----------------------|--------------|--------|--------------------|---------------------|
| 8 (a)                      |                                                                                 |                                               |                         |            |                       |              |        |                    |                     |
|                            | -                                                                               | $x \mid 0$                                    | 0.25                    | 0.5        | 1                     | 1.5          | 2      | 3                  | B2<br>[2]           |
|                            |                                                                                 | y 2                                           | 2.41                    | 2.69       | 3.10                  | 3.39         | 3.61   | 3.95               |                     |
| (b)                        | Points plo<br>Points join                                                       |                                               |                         | -          |                       |              |        |                    | B1ft<br>B1ft<br>[2] |
| (c)                        | $\ln(2x+1)$                                                                     | )=3x-4                                        | $\Rightarrow \ln(2$     | (2x+1)+2   | 2 = 3x - 2            |              |        |                    | M1                  |
|                            | Graph of                                                                        | y = 3x -                                      | 2 drawı                 | n. Inters  | ection po             | oint is at   |        | r 1.9<br>t either) | M1A1<br>[3]         |
| (d)                        | $e^{(6-x)} = (2$                                                                | $(2x+1)^2 =$                                  | $\Rightarrow$ 6 – $x =$ | $-\ln(2x+$ | $1)^2 \Rightarrow 6-$ | $-x = 2\ln($ | (2x+1) |                    | M1                  |
|                            | $\Rightarrow \ln(2x-$                                                           | $\Rightarrow \ln(2x+1) + 2 = 5 - \frac{x}{2}$ |                         |            |                       |              |        |                    | M1                  |
|                            | Graph of $y = 5 - \frac{x}{2}$ drawn. Intersection point is at $x = 2.4$ or 2.5 |                                               |                         |            |                       |              |        |                    | M1A1                |
|                            | (Accept either)                                                                 |                                               |                         |            |                       |              |        | [4]<br>11 marks    |                     |
| (a)<br>B2                  | All 3 points correct (B1 for 2 points correct)                                  |                                               |                         |            |                       |              |        |                    |                     |
| (b)<br>B1ft<br>B1ft<br>(c) | Points plo<br>Points join                                                       |                                               |                         |            | -                     |              |        |                    |                     |
| M1                         | $\ln(2x+1)$                                                                     | +2=3x                                         | c-2                     |            |                       |              |        |                    |                     |
| M1                         | y = 3x - 2                                                                      |                                               | •                       | \ 1.0      | 1.0.4                 | . •.1        |        |                    |                     |
| A1<br>(d)<br>M1            | Intersection $6 - x = 21$                                                       |                                               |                         | =) 1.8 or  | 1.9 Acce              | pt either    |        |                    |                     |
| M1                         | $\int_{0}^{\infty} \ln(2x+1)$                                                   | `                                             | ,                       |            |                       |              |        |                    |                     |
| M1                         | Graph of $y = 5 - \frac{x}{2}$ drawn                                            |                                               |                         |            |                       |              |        |                    |                     |
| A1                         | Intersection                                                                    | on point                                      | is at $(x =$            | =) 2.4 or  | 2.5 Acce              | pt either    |        |                    |                     |

| Question number | Scheme                                                                                                                                                | Marks          |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 9 (a)           | $540 - 3x^2 h \Rightarrow h - \frac{180}{1}$                                                                                                          |                |
|                 | $540 = 3x^2 h \Rightarrow h = \frac{180}{x^2}$                                                                                                        | M1<br>M1       |
|                 | $S = 2(3x^2 + 3xh + xh) = 6x^2 + 8xh$                                                                                                                 | IVII           |
|                 | $\Rightarrow S = 6x^2 + 8x \times \frac{180}{x^2} = 6x^2 + \frac{1440}{x} *$ $S = 6x^2 + 1440x^{-1}$                                                  | depM1A1<br>[4] |
| (b)             | $S = 6x^2 + 1440x^{-1}$                                                                                                                               |                |
|                 | $\frac{dS}{dx} = 12x - 1440x^{-2}$                                                                                                                    | M1             |
|                 | At min/max $\frac{dS}{dx} = 0$                                                                                                                        |                |
|                 | $12x - 1440x^{-2} = 0 \Rightarrow x^3 = 120 \Rightarrow x = 4.93242$                                                                                  | M1A1           |
|                 | $x \approx 4.93$ (3sf)                                                                                                                                |                |
|                 | $\frac{d^2S}{dx^2} = 12 + \frac{2880}{x^3} \Rightarrow \text{ Always positive for positive values of } x, \text{ hence}$                              | M1A1ft         |
|                 | minimum                                                                                                                                               | [5]            |
| (c)             | $S = 6 \times 4.93242^2 + \frac{1440}{4.93242} = 437.9185 \approx 438$                                                                                | B1<br>[1]      |
|                 | Tota                                                                                                                                                  | al 10 marks    |
| (a)             |                                                                                                                                                       |                |
| M1              | Rearrange the equation for volume to make h the subject                                                                                               |                |
| M1<br>depM1     | Obtains an expression for <i>S</i> in terms of <i>x</i> and <i>h</i> .<br>Dependent on previous M1. Use the equation to eliminate <i>h</i> to give an | 1              |
| depivii         | expression for $S$ in terms of $x$ only.                                                                                                              | •              |
| A1              | Obtains the <b>given</b> expression for <i>S</i> .                                                                                                    |                |
| (b)             |                                                                                                                                                       |                |
| M1              | Attempts to differentiates S wrt x with $x^n \to x^{n-1}$                                                                                             |                |
| M1<br>A1        | Equate their derivative to zero and solve for $x$                                                                                                     |                |
| M1              | Correct value of x, min 3 sf (Do not accept $\sqrt[3]{120}$ )<br>Obtains a correct second derivative from their first derivative.                     |                |
| 1V1 1           | (If signs of $\frac{dS}{dx}$ on either side of their x are considered, numerical calc                                                                 | ulations       |
|                 | <del></del> -                                                                                                                                         | uiations       |
| A1 ft           | must be shown.) Establish that the minimum has been obtained and give a conclusion.                                                                   | No need to     |
|                 | calculate the value of the second derivative.                                                                                                         | 0 11200 10     |
|                 | Follow through their x provided $x > 0$ and the second derivative is alg                                                                              | ebraically     |
|                 | correct or if signs of $\frac{dS}{dx}$ on either side of their x were considered these                                                                | e need to      |
|                 | be calculated and correct                                                                                                                             |                |
| (c)             |                                                                                                                                                       |                |
| B1              | Correct value of <i>S</i> . Must be 3 sf                                                                                                              |                |

| Question<br>number | Scheme                                                                                                                                                                              | Marks       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 10 (a)             | $6x - x^2 = -\left(x^2 - 6x\right)$                                                                                                                                                 |             |
|                    | $-(x^2 - 6x) = -\{(x - 3)^2 - 9\} \Rightarrow f(x) = -(x - 3)^2 + 9$                                                                                                                | M1A1A1      |
|                    | D = -1, $E = -3$ and $F = 9$                                                                                                                                                        | [3]         |
| (b)                | (i) $f(x)_{max} = 9$                                                                                                                                                                | B1ft        |
|                    | (ii) $x = 3$                                                                                                                                                                        | B1ft<br>[2] |
| (c)                | $6x - x^2 = x^2 - 4x + 8 \Rightarrow 2x^2 - 10x + 8 = 0$                                                                                                                            | M1          |
|                    | $2x^2 - 10x + 8 = (2x - 2)(x - 4) \Rightarrow x = 1, x = 4$                                                                                                                         | M1A1        |
|                    | y = 5, y = 8                                                                                                                                                                        |             |
|                    | Coordinates are (1, 5) and (4, 8)                                                                                                                                                   | A1<br>[4]   |
| (d)                | Area = $\int_{1}^{4} (6x - x^{2}) dx - \int_{1}^{4} (x^{2} - 4x + 8) dx = \int_{1}^{4} [-2x^{2} + 10x - 8] dx$                                                                      | M1          |
|                    | $= \left[ \frac{-2x^3}{3} + \frac{10x^2}{2} - 8x \right]_1^4$                                                                                                                       | M1          |
|                    | $= \left(\frac{-2 \times 4^3}{3} + \frac{10 \times 4^2}{2} - 8 \times 4\right) - \left(\frac{-2 \times 1^3}{3} + \frac{10 \times 1^2}{2} - 8 \times 1\right) = 9 \text{ (units}^2)$ | M1A1<br>[4] |
|                    | Tot                                                                                                                                                                                 | al 13 marks |
| (a)<br>M1          | An attempt to factorise to make $x^2$ positive e.g. $-(x \pm a)^2 \pm b$                                                                                                            |             |
| A1                 | Complete the square to obtain an expression in the form $-(x \pm 3)^2 \pm a$                                                                                                        | NB Any      |
| A1                 | expression in this form will score M1A1 $D = -1$ , $E = -3$ and $F = 9$                                                                                                             |             |
| (b)<br>B1 ft       | $(f(x)_{max}) = 9$ or follow through their value for $F$ .                                                                                                                          |             |
| B1 ft              | (x=)3 or follow through their value for E.                                                                                                                                          |             |
| (c)<br>M1          | Equating the two curves and simplifying to a 3 term quadratic                                                                                                                       |             |
| M1                 | Solve their 3 term quadratic                                                                                                                                                        |             |
| A1<br>A1           | x = 1, x = 4                                                                                                                                                                        |             |
| (d)                | (1, 5) and (4, 8)                                                                                                                                                                   |             |
| M1                 | Use of $\int_{a}^{b} (f(x) - g(x)) dx$ or $\int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$ Ignore limits                                                                               |             |
|                    | (f(x)) and $g(x)$ can be either way round)                                                                                                                                          |             |
| M1                 | Attempt the integration. Limits not needed.                                                                                                                                         |             |
| M1<br>A1           | Substitute the correct limits.  9 (units <sup>2</sup> )                                                                                                                             |             |
| 7 1 1              | NB A correct answer with no working will score 4 out of 4                                                                                                                           |             |

| Question<br>number | Scheme                                                                                                                                                                    | Marks       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 11 (a)             | $\frac{y-6}{x-5} = \frac{6-3}{5-1} \Rightarrow 2y-12 = x-5$                                                                                                               | M1A1 [2]    |
| (b)                | $\left(\frac{2\times 5+1\times -1}{2+1}, \frac{2\times 6+1\times 3}{3}\right) \Rightarrow (3, 5)^*$                                                                       | M1A1<br>[2] |
| (a)                |                                                                                                                                                                           |             |
| M1                 | A fully correct method for finding the equation of a straight line e.g.                                                                                                   |             |
|                    | $\frac{y - y_1}{y_1} = \frac{y_2 - y_1}{y_1}$                                                                                                                             |             |
|                    | $\frac{1}{x-x_1} - \frac{1}{x_2-x_1}$                                                                                                                                     |             |
| A1                 | 2y - 12 = x - 5 oe                                                                                                                                                        |             |
| (b)                |                                                                                                                                                                           |             |
| M1                 | Use of $\left(\frac{qx_1 + px_2}{p+q}, \frac{qy_1 + py_2}{p+q}\right)$ or $\begin{pmatrix} -1\\ 3 \end{pmatrix} + \frac{2}{3} \times \begin{pmatrix} 6\\ 3 \end{pmatrix}$ |             |
| A1                 | Obtains the <b>given</b> coordinates                                                                                                                                      |             |

| (c)                  | Gradient of perpendicular to $AB = -2$                                                                                                                                                                                                               | B1                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                      | $\frac{5-n}{3-m} = -2 \Longrightarrow (11 = 2m + n)$                                                                                                                                                                                                 | M1                 |
|                      | Radius = 5, so the length of $AC = 10$                                                                                                                                                                                                               |                    |
|                      | $100 = (3-n)^2 + (-1-m)^2 \Rightarrow (90 = n^2 - 6n + m^2 + 2m)$ Solves simultaneous equations                                                                                                                                                      | M1                 |
|                      | $90 = 121 - 44m + 4m^2 - 6(11 - 2m) + m^2 + 2m$                                                                                                                                                                                                      | depM1              |
|                      | $35 = 5m^{2} - 30m \Rightarrow m^{2} - 6m - 7 = 0$ $(m-7)(m+1) = 0 \Rightarrow m = 7,  n = -3$                                                                                                                                                       | depM1<br>A1<br>[6] |
| ALT (c)              | using vectors                                                                                                                                                                                                                                        |                    |
| (c)                  | $\overrightarrow{AB} = \begin{pmatrix} 5 \\ 6 \end{pmatrix} - \begin{pmatrix} -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix} \Rightarrow \text{ Perpendicular vector to } \overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ | B1                 |
|                      | $\left  \overrightarrow{AB} \right  = \sqrt{45} = 3\sqrt{5} \Rightarrow \left  AP \right  = 2\sqrt{5} \qquad \left  \overrightarrow{AC} \right  = 10$                                                                                                | M1M1               |
|                      | Using Pythagoras $ \overrightarrow{PC}  = \sqrt{100 - 20} = \sqrt{80} = 4\sqrt{5}$                                                                                                                                                                   | depM1              |
|                      | $\overrightarrow{PC} = \frac{4\sqrt{5}}{3\sqrt{5}} \times \begin{pmatrix} 3 \\ -6 \end{pmatrix} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}$                                                                                                             | depM1              |
|                      | $\Rightarrow$ Coordinates of $C$ are $(3+(4), 5+(-8)) \Rightarrow (7,-3)$                                                                                                                                                                            | A1<br>[6]          |
| (c)<br>B1<br>M1      | Gradient of perpendicular to $AB = -2$ (Can be implied by M1)<br>Obtains an equation using the gradient of the perpendicular and the point and $P$ (Condone if given in terms of $x$ and $y$ )                                                       | ints $(m, n)$      |
| M1<br>depM1<br>depM1 | Obtains a second equation using $AC = 10$ and the points $A$ and $C$ Solve simultaneously to obtain a 3 term quadratic Solve their 3 term quadratic                                                                                                  |                    |
| A1<br>ALT:           | m = 7,  n = -3                                                                                                                                                                                                                                       |                    |
| B1                   | Perpendicular vector to $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$                                                                                                                                                                |                    |
| M1                   | Finds $ \overrightarrow{AB} $ or $ \overrightarrow{AP} $ or $ \overrightarrow{PC}  = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ -6 \end{pmatrix}$                                                                           |                    |
| M1                   | States $ \overrightarrow{AC}  = 10$ or $\lambda = \frac{4}{3}$                                                                                                                                                                                       |                    |
| depM1                | Use of Pythagoras to find $ \overrightarrow{PC} $ or $ \overrightarrow{PC}  = \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \frac{4}{3} \times \begin{pmatrix} 3 \\ -6 \end{pmatrix}$                                                                       |                    |
| depM1<br>A1          | Finds $\overrightarrow{PC}$<br>m = 7, n = -3                                                                                                                                                                                                         |                    |

| (4)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (d)                   | $\left\{ \frac{y - ' - 3'}{x - ' 7'} = \frac{1}{2} \Rightarrow \left\{ y = \frac{x - 13}{2} \right\},  \frac{y - 3}{x 1} = -2 \Rightarrow \left\{ y = -2x + 1 \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1              |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IVII            |
|                       | Solving simultaneous equations by any method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|                       | $\frac{x-13}{2} = -2x+1 \Rightarrow p=3$ and $q=-5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1A1            |
|                       | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [3]             |
| ALT (d) using vectors |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| (d)                   | $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
|                       | $\overrightarrow{AD} = \overrightarrow{PC} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1              |
|                       | $C_{-1}$ in $C_{-1}$ | 3.54.4.4        |
|                       | Coordinates of point D $\Rightarrow$ $\left(-1+(4), 3+(-8)\right)=\left(3,-5\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1A1            |
| (2)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [3]             |
| (e)                   | Length of AB $\sqrt{(6-3)^2 + (5-1)^2} = 3\sqrt{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1              |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1              |
|                       | Length of $CD \sqrt{(-3-5)^2+(7-3)^2} = \sqrt{20} = 2\sqrt{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AI              |
|                       | $\frac{1}{2}\left(2\sqrt{5}+2\sqrt{5}\right)=4\sqrt{5}=50\left(2\pi i t^2\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1A1            |
|                       | Area of trapezium = $\frac{1}{2} \left( 3\sqrt{5} + 2\sqrt{5} \right) \times 4\sqrt{5} = 50 \text{ (units}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4]             |
| ALT (e) using vectors |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
|                       | 1  -1 5 7 3 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
|                       | Area = $\frac{1}{2}\begin{vmatrix} -1 & 5 & 7 & 3 & -1 \\ 3 & 6 & -3 & -5 & 3 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.54.4          |
|                       | $= \frac{1}{2} \left[ \left( -6 - 15 - 35 + 9 \right) - \left( 15 + 42 - 9 + 5 \right) \right] = 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1A1            |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/I A 1         |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1A1            |
|                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [4]<br>17 marks |
| (d)                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 marks        |
| M1                    | Obtains a linear equation using the given information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |
| M1                    | Obtains a 2 <sup>nd</sup> linear equation using the given information and solves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |
| 1,11                  | simultaneously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |
| A1                    | p = 3 and $q = -5$ <b>NB</b> A correct answer, no incorrect working scores 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | out of 3        |
| ALT:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| M1                    | Use $\overrightarrow{AD} = \overrightarrow{PC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| M1                    | Substitution of the point $(-1, 3)$ to find the coordinates of point D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| A1                    | p = 3 and $q = -5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |
| (e)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| M1                    | Use Pythagoras to find either the length of AB or CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| A1                    | Both lengths correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| M1                    | Use of area of trapezium formula using their lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |
| A1                    | 50 (units not required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| ALT:                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| M1                    | $1 \begin{vmatrix} a & c & e & g & a \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D               |
|                       | Use of Area = $\frac{1}{2}\begin{vmatrix} a & c & e & g & a \\ b & d & f & h & b \end{vmatrix}$ with the coordinates of A, B, C and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | υ               |
| A1                    | 1   1   5   7   3   -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
|                       | Area = $\frac{1}{2} \begin{vmatrix} -1 & 5 & 7 & 3 & -1 \\ 3 & 6 & -3 & -5 & 3 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |
| M1                    | Attempt to evaluate the Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| A1                    | 50 (units not required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |